非凡文学 www.ffwx.net,网游之另类双神无错无删减全文免费阅读!
本文由晋(jin)江(jiang)文学城独家发布,正常章节可下载【晋(jin)江(jiang)小说阅读app】支持正版。千字三分,一章一毛,一月三块钱,可轻易收获正版光荣,捕捉逗比作者一只。
微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关。这四大公式构成了经典微积分学教程的骨干。
牛顿-莱布尼茨公式
基本简介:若函数f(x)在[a,b]上连续,且存在原函数f(x),则f(x)在[a,b]上可积,且莱布尼茨公式,这即为牛顿-莱布尼茨公式。理解:比如路程公式:距离s=速度v*时间t,即s=v*t,那么如果t是从时间a开始计算到时间b为止,t=b-a,而如果v不能在这个时间段内保持均速,那么上面的这个公式(s=v*t,t=b-a)就不能和谐的得到正确结果,于是引出了定积分的概念。
公式应用:那么如何在用积分得到上述路程公式呢
公式这个公式能表明路程s是每个不同速度时候行驶的时间和当前速度乘积的和。牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:对函数f(x)于区间[a,b]上的定积分表达为:
b∫a*f(x)dx
现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:
Φ(x)=x∫a*f(x)dx
但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:
Φ(x)=x∫a*f(t)dt
研究这个函数Φ(x)的性质:1、定义函数Φ(x)=x(上限)∫a(下限)f(t)dt,则Φ与格林公式和高斯公式的联系
'(x)=f(x)。
证明:让函数Φ(x)获得增量Δx,则对应的函数增量
ΔΦ=Φ(xΔx)-Φ(x)=xΔx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt
显然,xΔx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=xΔx(上限)∫x(下限)f(t)dt
而ΔΦ=xΔx(上限)∫x(下限)f(t)dt=f(ξ)Δx(ξ在x与xΔx之间,可由定积分中的中值定理推得,当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有limΔx→0ΔΦ/Δx=f(x)
可见这也是导数的定义,所以最后得出Φ'(x)=f(x)。
2、b(上限)∫a(下限)f(x)dx=f(b)-f(a),f(x)是f(x)的原函数。
证明:我们已证得Φ'(x)=f(x),故Φ(x)c=f(x)
但Φ(a)=0(积分区间变为[a,a],故面积为0),所以f(a)=c
于是有Φ(x)f(a)=f(x),当x=b时,Φ(b)=f(b)-f(a),
而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=f(b)-f(a)
把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。
高阶导数莱布尼兹公式
(uv)^(n)=∑(n,k=0)c(k,n)*u^(n-k)*v^(k)
注:c(k,n)=n!/(k!(n-k)!)^代表后面括号及其中内容为上标,求xx阶导数
格林公式
基本介绍:在平面区域上的二重积分也可以通过沿区域的边界曲线上的曲线积分来表示。
详细介绍
折叠单连通区域的概念:设d为平面区域,如果d内任一闭曲线所围的部分区域都属于d,则d称为平面单连通区域;否则称为复连通区域。通俗地讲,单连通区域是不含”洞”(包括”点洞”)与”裂缝”的区域。
折叠区域的边界曲线的正向规定:设是平面区域的边界曲线,规定的正向为:当观察者沿的这个方向行走时,平面区域(也就是上面的d)内位于他附近的那一部分总在他的左边。简言之:区域的边界曲线的正... -->>
本文由晋(jin)江(jiang)文学城独家发布,正常章节可下载【晋(jin)江(jiang)小说阅读app】支持正版。千字三分,一章一毛,一月三块钱,可轻易收获正版光荣,捕捉逗比作者一只。
微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关。这四大公式构成了经典微积分学教程的骨干。
牛顿-莱布尼茨公式
基本简介:若函数f(x)在[a,b]上连续,且存在原函数f(x),则f(x)在[a,b]上可积,且莱布尼茨公式,这即为牛顿-莱布尼茨公式。理解:比如路程公式:距离s=速度v*时间t,即s=v*t,那么如果t是从时间a开始计算到时间b为止,t=b-a,而如果v不能在这个时间段内保持均速,那么上面的这个公式(s=v*t,t=b-a)就不能和谐的得到正确结果,于是引出了定积分的概念。
公式应用:那么如何在用积分得到上述路程公式呢
公式这个公式能表明路程s是每个不同速度时候行驶的时间和当前速度乘积的和。牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:对函数f(x)于区间[a,b]上的定积分表达为:
b∫a*f(x)dx
现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:
Φ(x)=x∫a*f(x)dx
但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:
Φ(x)=x∫a*f(t)dt
研究这个函数Φ(x)的性质:1、定义函数Φ(x)=x(上限)∫a(下限)f(t)dt,则Φ与格林公式和高斯公式的联系
'(x)=f(x)。
证明:让函数Φ(x)获得增量Δx,则对应的函数增量
ΔΦ=Φ(xΔx)-Φ(x)=xΔx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt
显然,xΔx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=xΔx(上限)∫x(下限)f(t)dt
而ΔΦ=xΔx(上限)∫x(下限)f(t)dt=f(ξ)Δx(ξ在x与xΔx之间,可由定积分中的中值定理推得,当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有limΔx→0ΔΦ/Δx=f(x)
可见这也是导数的定义,所以最后得出Φ'(x)=f(x)。
2、b(上限)∫a(下限)f(x)dx=f(b)-f(a),f(x)是f(x)的原函数。
证明:我们已证得Φ'(x)=f(x),故Φ(x)c=f(x)
但Φ(a)=0(积分区间变为[a,a],故面积为0),所以f(a)=c
于是有Φ(x)f(a)=f(x),当x=b时,Φ(b)=f(b)-f(a),
而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=f(b)-f(a)
把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。
高阶导数莱布尼兹公式
(uv)^(n)=∑(n,k=0)c(k,n)*u^(n-k)*v^(k)
注:c(k,n)=n!/(k!(n-k)!)^代表后面括号及其中内容为上标,求xx阶导数
格林公式
基本介绍:在平面区域上的二重积分也可以通过沿区域的边界曲线上的曲线积分来表示。
详细介绍
折叠单连通区域的概念:设d为平面区域,如果d内任一闭曲线所围的部分区域都属于d,则d称为平面单连通区域;否则称为复连通区域。通俗地讲,单连通区域是不含”洞”(包括”点洞”)与”裂缝”的区域。
折叠区域的边界曲线的正向规定:设是平面区域的边界曲线,规定的正向为:当观察者沿的这个方向行走时,平面区域(也就是上面的d)内位于他附近的那一部分总在他的左边。简言之:区域的边界曲线的正... -->>
本章未完,点击下一页继续阅读